OCENA JAKOŚCI SOLANKI Z KPMG KOSAKOWO WPROWADZANEJ DO WÓD ZATOKI GDAŃSKIEJ POD WZGLĘDEM ZAWARTOŚCI METALI W CZERWCU 2019 r.

dr Grażyna Dembska
mgr inż. Agnieszka Flasińska
dr Grażyna Pazikowska-Sapota
dr inż. Katarzyna Galer – Tatarowicz
mgr inż. Katarzyna Szczepańska
mgr Agnieszka Cichowska

Gdańsk, lipiec 2019
Kierownik Zakładu Ochrony Środowiska
Instytutu Morskiego w Gdańsku
dr Grażyna Dembska

Wykonawcy:

Zakład Ochrony Środowiska:
dr Grażyna Dembska
dr Grażyna Pazikowska-Sapota
dr inż. Katarzyna Galer – Tatarowicz
mgr inż. Katarzyna Szczepańska
mgr Agnieszka Cichowska
mgr inż. Agnieszka Flasińska

Wykonano 2 egz. pracy

Gdańsk, lipiec 2019 r.
Ocena jakości solanki z KPMG Kosakowo wprowadzanej do wód Zatoki Gdańskiej w czerwcu 2019 r.

SPIS TREŚCI

1. WPROWADZENIE .. 4
2. MATERIAŁ DO BADAŃ .. 4
3. METODYKA BADAŃ .. 4
4. WYNIKI BADAŃ ORAZ ICH INTERPRETACJA .. 5
5. PODSUMOWANIE .. 7
6. LITERATURA .. 8

SPIS ZAŁĄCZNIKÓW

1. Sprawozdanie z badań nr 195/19 Laboratorium Zakładu Ochrony Środowiska Instytutu Morskiego w Gdańsku z dnia 05.07.2019 r.

SPIS TABEL

Tabela 1. Wykaz zastosowanych metod
Tabela 2. Stężenie metali w solance pobranej w dniu 26.06.2019 r.
1. WPROWADZENIE

Praca została wykonana przez Zakład Ochrony Środowiska Instytutu Morskiego w Gdańsku dla GAS STORAGE POLAND Sp. z o.o. na podstawie zlecenia nr DS/G/705/19 z dnia 10.06.2019 r.

Zakres badań obejmował:

1) Pobranie próbki solanki z zrzutu w dniu 26.06.2019 r.

2) Analizę pobranej próbki solanki w zakresie:
 - chrom,
 - mangan,
 - nikiel,
 - rtęć,
 - arsen,
 - ołów,
 - miedź,
 - cynk,
 - kadm

3) Ocenę stopnia zanieczyszczenia pobranych próbek solanki wymienionymi metalami w odniesieniu do rozporządzenia Ministra Środowiska z dnia 18 listopada 2014r. w sprawie warunków, jakie należy spełnić przy wprowadzaniu ścieków do wód lub do ziemi, oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego (Dz. U. 2014, poz. 1800).

2. MATERIAŁ DO BADAŃ

Przedmiotem badań chemicznych była próbka solanki pobranej z zrzutu w dniu 26.06.2019 r.

3. METODYKA BADAŃ

Pobieranie i analizę próbek solanki przeprowadzono zgodnie z Polskimi Normami oraz własnymi procedurami badawczymi opracowanymi na podstawie literatury oraz aplikacji dołączonych przez producentów do aparatury badawczej. Wszystkie zastosowane metody były objęte zakresem akredytacji Laboratorium Zakładu Ochrony Środowiska Instytutu Morskiego wydanego przez Polskie Centrum Akredytacji (AB 646). Wykaz zastosowanych metod przedstawiono w tabeli 1.
Tabela 1. Wykaz zastosowanych metod

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Rodzaj badania</th>
<th>Metoda badań</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Chrom, mangan, nikiel, ołów, miedź, cynk, kadm, arsen</td>
<td>Metoda spektrometrii mas z jonizacją w plazmie indukcyjnie sprzężonej (ICP-MS) wg PN-EN ISO 17294-2:2016-11</td>
</tr>
<tr>
<td>3.</td>
<td>Ręczny</td>
<td>Metoda absorpcyjnej spektrometrii atomowej z amalgamacją par ręcznej wg procedury PB-21 wyd. 4 z dn. 15.02.2019 r.</td>
</tr>
</tbody>
</table>

Badania solanki wykonywano metodami referencyjnymi bądź równoważnymi, określonymi w rozporządzeniu Ministra Środowiska z dn. 16.12.2014r. w sprawie warunków jakie należy spełniać przy wprowadzaniu ścieków do wód lub do ziemi, oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego (Dz. U. 2014 poz. 1800)

4. WYNIKI BADAŃ ORAZ Ich INTERPRETACJA

Wyniki badań zawartości metali w pobranych próbkach solanki przedstawiono w sprawozdaniu z badań 195/19, które załączono do niniejszego opracowania, oraz w tabeli 2.

Tabela 2. Stężenie metali w solance pobranej w dniu 26.06.2019 r.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Arsen (As)</td>
<td>mg·dm⁻³</td>
<td>Wynik badania</td>
<td>0,0046</td>
<td>0,0008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Niepewność</td>
<td>0,0008</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Mangan (Mn)</td>
<td>mg·dm⁻³</td>
<td>p.0,001</td>
<td>0,064</td>
<td>0,008</td>
</tr>
<tr>
<td>3</td>
<td>Kadm (Cd)</td>
<td>mg·dm⁻³</td>
<td>p.0,001</td>
<td>0,022</td>
<td>0,0003</td>
</tr>
<tr>
<td>4</td>
<td>Chrom (Cr)</td>
<td>mg·dm⁻³</td>
<td>p.0,001</td>
<td>0,028</td>
<td>0,0003</td>
</tr>
<tr>
<td>5</td>
<td>Miedź (Cu)</td>
<td>mg·dm⁻³</td>
<td>p.0,001</td>
<td>0,0086</td>
<td>0,0018</td>
</tr>
<tr>
<td>6</td>
<td>Ręczny (Hg)</td>
<td>mg·dm⁻³</td>
<td>p.0,001</td>
<td>0,0021</td>
<td>0,0003</td>
</tr>
<tr>
<td>7</td>
<td>Nikiel (Ni)</td>
<td>mg·dm⁻³</td>
<td>p.0,001</td>
<td>0,050</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Cynk (Zn)</td>
<td>mg·dm⁻³</td>
<td>p.0,001</td>
<td>0,027</td>
<td>0,0005</td>
</tr>
</tbody>
</table>

p. – poniżej dolnej granicy oznacznialności
* – wartości graniczne średniodobowe dla Hg i Cd (zgodnie z zal. 4, tab. 1, Dz U 2014, poz.1800).
** – najwyższa dopuszczalna wartość dla As, Cr, Ni, Zn, Cu, i Pb (zgodnie z zal. 4, tab. II, Dz U 2014, poz.1800).

Porównując solanki powstające w wyniku wypłukania pokładów soli ścieków oczyszczonymi z Oczyszczalni Dębogórze w Gdyni i odprowadzane są do wód Zatoki Gdańskiej, otrzymane wyniki badań porównano z najwyższymi dopuszczalnymi wartościami wskaźników zanieczyszczeń dla ścieków przemysłowych zamieszczonych w załączniku 4 do
Rozporządzenia Ministra Środowiska z dn. 16.12.2014r. w sprawie warunków jakie należy spełniać przy wprowadzaniu ścieków do wód lub do ziemi, oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego (Dz. U. 2014 poz. 1800).

W rozporządzeniu tym dla rtęci i kadm (zał. 4, tabela I) określana są najwyższe dopuszczalne wartości średniodobowe oraz najwyższe dopuszczalne wartości średnie miesięczne. Wartości te wynoszą odpowiednio:

- Hg – 0,06 mg·dm⁻³ (najwyższa dopuszczalna wartość średniodobowa) i 0,03 mg·dm⁻³ (najwyższa dopuszczalna wartość średniomiesięczna),
- Cd – 0,4 mg·dm⁻³ (najwyższa dopuszczalna wartość średniodobowa) i 0,2 mg·dm⁻³ (najwyższa dopuszczalna wartość średniomiesięczna).

Natomiast dla pozostałych pierwiastków wymienione rozporządzenie (zał. 4, tabela II) określa najwyższe dopuszczalne wartości stężeń. Wartości te wynoszą odpowiednio:

- As – 0,1 mg·dm⁻³
- Cr – 0,5 mg·dm⁻³
- Cu – 0,5 mg·dm⁻³
- Ni – 0,5 mg·dm⁻³
- Zn – 2 mg·dm⁻³
- Pb – 0,5 mg·dm⁻³

Dla mangana w wyżej przytaczonym rozporządzeniu nie określa się dopuszczalnych wartości granicznych.

Mangan (Mn) jest jednym z najbardziej rozpowszechnionych pierwiastków w środowisku. Jego procentowy udział w skorupie ziemi został oszacowany na około 0,1%. Mangan w przyrodzie nie występuje w formie elementarnej, ale jest składnikiem ponad 100 minerałów. W wodach powierzchniowych Mn występuje zarówno w formie rozpuszczonej, jak i zawieszonej, przy czym forma, w której on występuje w środowisku wodnym zależy od wartości pH, panujących warunków oksydacyjno-redukcyjnych, czy współobecności w wodzie innych anionów. W warunkach tlenowych na ogół jest wytrączany z wody postaci zawiesiny (tlenki, wodorotlenki i węglany) i wiązany przez osady denne. Średnia zawartość mangana w przybrzeżnych wodach Morza Bałtyckiego to ok. 0,003 mg·dm⁻³ (Kabata-Pendias, 1993).

węglowodanów, upośledzenie funkcji immunologicznych (Partridge i Lymberry 2009). Dla ryb, mangan jest toksyczny przy stężeniach rzędu od 75 do 1200 mg·dm⁻³ (Dojlido, 1995). Jednakże, jak podaje Partridge i Lymberry (2009) już przy stężeniach 5 mg Mn·dm⁻³ mogą pojawić się negatywne skutki dla wzrostu, rozwoju i przeżywalności ryb morskich.

W polskim prawodawstwie dotyczącym ochrony środowiska mangan jest wyszczególniany jedynie w wodach podziemnych i w wodzie przeznaczonej do spożycia. Dopuszczalne zawartości manganu w wodach do picia to 0,05 mg·dm⁻³ (Dz.U, 2017, poz. 2294, z dn.11.12.2017r.). Natomiast wartości graniczne dla wód podziemnych są następujące: dla I klasy - 0,05 mg·dm⁻³, II klasa - 0,4 mg·dm⁻³, III i IV klasa - 1 mg·dm⁻³, V klasa - >1 mg·dm⁻³, zaś tło hydrochemiczne dla wód podziemnych dla manganu przyjmuje się na poziomie 0,01-0,4 mg·dm⁻³ (Dz.U. 2016, poz. 85, z dn. 19.01.2016r.). Przy czym klasa I to wody bardzo dobrej jakości, klasa II- to wody dobrej jakości, klasa III - to wody zadawalającej jakości (słaby wpływ działalności człowieka), klasa IV- to wody złej jakości (znaczący wpływ działalności człowieka).

Porównując stężenia badanych pierwiastków w solance pobranej do badań w czerwcu 2019 r. z wynikami badań z marca 2019 r., stwierdzono spadek stężenia arsenu (marzec 2019 r. – 0,0094 mg·dm⁻³), miedzi (marzec 2019 r. – 0,0032 mg·dm⁻³), manganu (marzec 2019 r. – 0,080 mg·dm⁻³), niklu (marzec 2019 r. – 0,0025 mg·dm⁻³) i ołowiu (marzec 2019 r. – 0,0044 mg·dm⁻³) oraz nieznaczny wzrost stężenia rtęci (marzec 2019 r. – 0,036 mg·dm⁻³) i chromu (marzec 2019 r. – 0,0016 mg·dm⁻³). Stężenia pozostałych badanych pierwiastków tj. kadmu, i cynku utrzymywały na zbliżonym poziomie w marcu i czerwcu 2019 r. W porównaniu z wynikami z czerwca 2018 r. odnotowano spadek stężeń dla arsenu (0,00595 mg·dm⁻³ w czerwcu 2018 r.), manganu (0,01867 mg·dm⁻³ w czerwcu 2018 r.), miedzi (0,00345 mg·dm⁻³ w czerwcu 2018 r.), niklu (0,00266 mg·dm⁻³ w czerwcu 2018 r.) oraz wzrost dla chromu (0,00176 mg·dm⁻³ w czerwcu 2018 r.), rtęci (0,0071 mg·dm⁻³ w czerwcu 2018 r.) i ołowiu (0,00252 mg·dm⁻³ w czerwcu 2018 r.). Stężenia kadmu i cynku w czerwcu 2018 r. i czerwcu 2019 r. są na podobnym poziomie.

5. PODSUMOWANIE

Porównując otrzymane wartości stężeń badanych pierwiastków (As, Cr, Cu, Ni, Pb, Zn, Cd, Hg) w pobranej próbie solanki z wartościami granicznymi określonymi w Rozporządzeniu Ministra Środowiska z dn. 16.12.2014r. w sprawie warunków jakie należy spełniać przy wprowadzaniu ścieków do wód lub do ziemi, oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego (Dz. U. 2014 poz. 1800), stwierdzono, że stężenia wymienionych metali w badanej próbie były na bardzo niskim poziomie i nie przekroczyły dopuszczalnych wartości granicznych.

W badanej solance zaobserwowano lekko podwyższoną zawartość manganu (Mn), jednakże nie przekracza ona wartości tła hydrochemicznego wód podziemnych i jest dużo niższa od wartości toksycznych dla ryb. Stężenie manganu nie jest normowane w ściekach odprowadzanych do wód i do ziemi.
6. LITERATURA

Sprawozdanie z badań Nr 195/19

Data wydania sprawozdania: 05.07.2019 r.
Klient: Gas Storage Poland Sp. z o.o.
Adres klienta: 81-198 Dębogórze, ul. Rumska 28
Przedmiot badań: roztwór solanki/ściek KPMG Kosakowo
Zakończenie badań: 05.07.2019 r.

Opis, stan i jednoznaczna identyfikacja próbek do badań

| Lp. | Numer próbk | Miejsce pobrania / kod próbki klienta | Data pobrania | Data dostarczenia | Próbka pobrana przez | Opis próbk
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>195/19/2291</td>
<td>Zrzut 1</td>
<td>26.06.2019</td>
<td>26.06.2019</td>
<td>Pracownika Instytutu Morskiego</td>
<td>Roztwór solanki/ ściek</td>
</tr>
</tbody>
</table>

Wyniki badań

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Rodzaj badania</th>
<th>Jednostka</th>
<th>Numer próbk</th>
<th>Kód próbk</th>
<th>Zrzut 1</th>
<th>Wynik badania</th>
<th>Niepewność</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Arsen (As)</td>
<td>mg/dm³</td>
<td>0,0046</td>
<td>0,0008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Mangan (Mn)</td>
<td>mg/dm³</td>
<td>0,064</td>
<td>0,008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Kadm (Cd)</td>
<td>mg/dm³</td>
<td>p,0,001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Chrom (Cr)</td>
<td>mg/dm³</td>
<td>0,0022</td>
<td></td>
<td>0,0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Miedź (Cu)</td>
<td>mg/dm³</td>
<td>0,0028</td>
<td></td>
<td>0,0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Ręże (Hg)</td>
<td>mg/dm³</td>
<td>0,0086</td>
<td></td>
<td>0,0018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Nikel (Ni)</td>
<td>mg/dm³</td>
<td>0,0021</td>
<td></td>
<td>0,0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Cynk (Zn)</td>
<td>mg/dm³</td>
<td>p,0,050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Ołów (Pb)</td>
<td>mg/dm³</td>
<td>0,0027</td>
<td></td>
<td>0,0005</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Objaśnienia do tabeli:
- p - poniżej granicy oznaczeni

Wyniki badań cech zamieszczonych w zakresie akredytacji PCA nr AB 646, podano z niepewnością rozszerzoną, współczynnik rozszerzenia k = 2; przy 95% prawdopodobieństwie. Nie uwzględniono niepewności pobierania próbki.

Identyfikacja zastosowanych metod

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Rodzaj badania</th>
<th>Metoda badań</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ręże</td>
<td># Metoda absorpcyjnej spektrometrii atomowej z amalgamacją par rężei wg procedury PB-21 wyd. 4 z dn. 15.02.2019 r.</td>
</tr>
<tr>
<td>2</td>
<td>Mangan, kadm, chrom, miedź, cynk, ołów, arsen, nikiel</td>
<td>Metoda spektrometrii mas z jonizacją w plazmie indukcyjnie sprzężonej (ICP-MS) wg PN-EN ISO 17294-2:2016-11</td>
</tr>
<tr>
<td>3</td>
<td>Pobieranie próbek</td>
<td>Metoda manualna wg PN-ISO 5667-10:1997</td>
</tr>
</tbody>
</table>
Sprawozdanie z badań Nr 195/19

Badania wykonywane były metodami określonymi w rozporządzeniu Ministra Środowiska z dn. 16.12.2014 r. w sprawie warunków jakie należy spełniać przy wprowadzaniu ścieków do wód lub do ziemi, oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego (Dz. U. 2014 poz. 1800) z wyjątkiem metod oznaczonych - #, które są metodami równoważnymi nie zamieszczonymi w w/ w rozporządzeniu.

Na tym sprawozdanie z badań zakończono.
Wyniki odnoszą się wyłącznie do badanej próbki.
Sprawozdanie zawiera 2 strony wyników badań i bez pisemnej zgody Laboratorium nie może być powielane inaczej, jak tylko w całości.
Klient ma prawo do składania reklamacji na zawartość Sprawozdania z badań w terminie do 14 dni od dnia jego otrzymania.

Sporządził:
Agnieszka Flasińska

Data: 05.07.2019 r.

Autoryzował:
Adiunkt - dr G. Dembska
Adiunkt - dr G. Pazikowska-Sapota
Adiunkt - dr inż. K. Galer-Tatarowicz
Specjalista - mgr inż. Agnieszka Flasińska

w zakresie wymienionym w FAB-14

Zatwierdził:
Grażyna Pazikowska - Sapota

25.07.2019 r.

Laboratorium
Zakładu Ochrony Środowiska
Instytutu Morskiego w Gdańsku